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Abstract. The Internet of Things applies and has a large impact on a multitude
of application domains, such as assistive technologies and smart transportation,
by bringing together the physical and virtual worlds. Due to the large scale, the
extreme heterogeneity and the dynamics of the IoT there are huge challenges for
leveraging the IoT within software applications. The management of devices and
the interactions with software services poses, if not, the greatest challenge in IoT,
so as to support the development of distributed applications. This paper addresses
this challenge by applying the service-oriented architecture paradigm for the
dynamic management of IoT devices and for supporting the development of
distributed applications. A service-oriented approach is a natural fit for both
communication and management of IoT devices, and can be combined logically
with software services, since it is currently the paradigm that excels and dominates
the virtual domain. Building on our past and ongoing work on middleware plat‐
forms, this work reviews middleware solutions and proposes a service-oriented
middleware platform to face IoT heterogeneity, the interactive functionality of
IoT and promote modular-based development to scale as well as provide flexi‐
bility in the development of IoT-based distributed applications.

Keywords: Middleware · IoT · Services · Mobile devices · Distributed
applications

1 Introduction

During the last decade, key trends have been observed in the world of embedded devices,
which refer mainly to miniaturization, increased computation, cheaper hardware and the
shift of software approaches towards service-oriented integration in the Internet of
Things (IoT). On the basis of the stated-by-many vision for the IoT, the majority of the
devices will soon have communication and computation capabilities that they will use
to connect, interact, and cooperate with their surrounding environment [1, 2], including
other devices and services. Business-oriented complex distributed applications are being
developed on the basis of composition and collaboration among diverse services, in
many cases across different vendors.

The Internet of Services (IoS) vision [3] assumes this on a large scale, where services
reside in different layers of the enterprise, IT networks, or even running directly on
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devices and machines of the company [4]. As the Internet proved its merit both for
content and services, we are now facing a trend where service-based information systems
blur the border between the physical and virtual worlds, offering a fertile ground for a
new breed of real-world aware distributed applications. Therefore, for the success of the
IoT, future research, vision and business ecosystems require a merge between cloud
computing and the IoT, by enabling a model of “Everything as a Service”.

Such a model will deliver an IoT paradigm, where applications rely on the cooper‐
ation between heterogeneous devices and software applications, all of which are offered
as dynamic web services. Thus, functions such as dynamic discovery, query, selection,
and provisioning of web services will be needed for facilitating access and interaction
between real-world objects (i.e. devices) and virtual objects (i.e. software services) [4].
The future Internet will provide the capability for embedded heterogeneous real-world
entities, similar to virtual entities, to offer their functionalities (e.g. provisioning of
sensor data) as RESTful/Web APIs [6]. This will enable virtual entities (i.e. enterprise
services) to interact with real-world entities since both will be offered as services in a
realisation of the “Everything as a Service” model.

The added value brought by real-world services, (i.e. services) provided by
embedded systems that are linked to the physical world, is the increased efficiency of
the decision making process due to the fact that they offer real-time data about the world.
Thus, the critical issue about such a model is that embedded heterogeneous devices will
be able to offer their functionality as web services, which can be used by applications,
other services, or even other devices. In this case, device drivers will not be needed
anymore and a new level of efficiency will be achieved as web service clients can be
generated dynamically at runtime [4]. This will result in a mashup of services where
horizontal collaboration between devices will be possible, as well as vertical collabo‐
ration of devices with software services and enterprise applications that provide corre‐
spondingly interaction capabilities with people [5].

In related work [4, 7], the key challenges continue to be open and need to be
addressed [8], such as providing topology dynamics, high scalability and overcoming
heterogeneity in such a dynamic IoT environment. In fact, such a highly dynamic envi‐
ronment is also further augmented by the fact that peoples’ needs evolve over time, so
a scalable and reliable IoT environment needs to be designed with inherent built-in
modularity, flexibility and a variety of components in order to meet diverse individual
situations and to remain attractive to end-users over time. The following list outlines the
key unresolved IoT challenges [8]:

• Heterogeneity: Sensors and actuators are the main actors in an IoT environment,
where due to the highly heterogeneous nature of IoT devices, enabling interopera‐
bility is a complex task.

• Scalability: To accurately represent the real world, a sensing/actuating task will more
often require the cooperation and coordination of numerous things.

• Flexibility: Different configurations may be required for different situations.

A service-oriented approach that follows the concepts of the Internet can provide a
solution to the above mentioned challenges. Web technologies provide the base on which
a service-oriented approach for the IoT can be formulated to properly address these
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restrictions. This enables different devices and software components to work together
by ex-posing their functionalities to others as web services. Services are the entities that
enable users to access the capabilities through pre-defined interfaces in accordance with
the policies and constraints, which are part of the description of that service [10]. Web
services are platform-independent and can be accessed through the Internet. The original
contribution of the web was as a content-provisioning medium. Today, the key role of
the web is to act as a facilitator in service outsourcing [2]. This role enables businesses
to collaborate dynamically, thus reducing overheads. Therefore, the service deployment
model can be applied to any component, physical or virtual, so as to make it available
as a service [2, 9].

In the IoT, there is huge heterogeneity in both the communication technologies, and
the system level technologies. Therefore, apart from service-oriented computing, a
middleware system can support heterogeneity of both communication and system-level
technologies that are diverse and many in the world of the IoT. In general, a middleware
abstracts the complexities of the system or hardware, allowing the application developer
to focus all his effort on the task to be solved [10]. In fact, a middleware system offers
a software layer between applications, the operating system and the network commu‐
nications layers. Based on the above, it is evident that a middleware system can offer an
abstraction layer for handling the complexities of the IoT and addressing the challenges
faced in developing such applications.

This work aims to support the development of dynamic, flexible and distributed IoT
applications, by combining service-oriented computing and middleware technologies.
The proposed service-oriented system, coined Adaptive Runtime Middleware (ARM),
allows addressing heterogeneity, scalability and flexibility issues. The RESTful archi‐
tectural pattern is adopted, which enables upon deployment of smart devices (e.g.
sensors, actuators), to discover these devices, detect their capabilities, regenerate and
redeploy the middleware injecting new RESTful service interfaces (i.e. APIs).

ARM’s key capability is the annotation-driven runtime code generation that drives
dynamic injection of device capabilities in the form of new service interfaces. The
ARM’s self-adaptive nature enables interoperability amongst heterogeneous devices,
automates device discovery and management, and exposes these devices as services.
This offers simplicity for the developer, without introducing additional technologies that
increase the already profound complexity in the IoT. In fact, the developer will only
need to base its client application implementation on the generated documentation,
which describes the generated services that enable management of the IoT devices.

2 Related Work

2.1 Context-Aware Middleware

Several approaches and research work has been performed for the development of
middleware systems in different research domains. The Cooltown project [11] supports
wireless mobile devices in interacting with a web-enabled environment by assigning
URLs to devices, people and things as a web-presence identifier – providing therefore
a “rich” interface to the entity. Middleware systems include the Gaia [12] that aims to
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provide a distributed functionality similar to an operating system, the MiddleWhere [13],
which provides enhanced and enriched location information to applications by utilizing
a number of location sensing techniques based on a location model, and the MobiPADS
[14] that targets mobile environments and its services are provided through various
migrated entities from different MobiPADS environments.

A context-aware middleware is also developed in the MUSIC EU project [15], which
is a comprehensive open-source software development framework. MUSIC is an ubiq‐
uitous OSGi-based context-management middleware system for developing adaptive
applications and services for ubiquitous environments.

2.2 Middleware for the Internet of Things

Several middleware IoT architectures and frameworks have been proposed, aiming for
a more usable connection among, often, complex and already existing applications that
were not originally designed to be connected. The essence of the IoT is making it possible
for just about anything to be connected and communicate data over a network, where
the middleware framework is part of the architecture thus enabling that connectivity
among heterogeneous devices and software services.

An example of a scalable and modular architecture that integrates various compo‐
nents and technologies is openHAB [16]. OpenHAB is an open-source, agnostic auto‐
mation software with an active community, which encompasses different home auto‐
mation systems and technologies under the same umbrella of a single solution, enabling
the user to define the interaction of systems and devices through automation rules and
uniform user interfaces. It is also OSGi-based, and provides APIs for integration with
other systems, where REST API is used for remote communication.

OpenIoT is an open-source middleware for connecting cloud sensors and collecting
information, extending the IoT solution and exploring efficient ways to use and manage
cloud environments [17, 18]. Through an adaptive middleware framework, which is
deployed on the basis of one or more distributed nodes, data are collected, filtered,
combined and semantically annotated from virtual sensors or physical devices. The
proposed middleware does not support though access via service interfaces.

2.3 Service-Oriented Middleware

The service-oriented design paradigm deals with the implementation of software or
applications in the form of services by following the concepts and ideas of service-
oriented computing (SOC). SOC benefits, such as technology neutrality, loose coupling,
service reusability, service composability, and service discoverability [19], can be also
beneficial to IoT applications. However, IoT’s heterogeneity, scalability and flexibility
make service discovery, deployment and composition challenging.

The Hydra EU research project set out to develop a middleware for Networked
Embedded Systems. The Hydra middleware allows developers to incorporate hetero‐
geneous physical devices into their applications by offering easy-to-use web service
interfaces for controlling any type of physical device irrespective of its network tech‐
nology such as Bluetooth, RF, ZigBee, RFID, WiFi, etc. As stated in [20], the software
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middleware is based on Service-Oriented Architecture (SOA), which means that the
communication occurs transparently between the lower layers. The aim of the middle‐
ware, coined LinkSmart, was to support diverse and heterogeneous connected devices,
which enable developers to implement applications that depend on and adapt to context
information [21]. Services are defined statically in the proposed middleware.

CHOReOS [22] is a service-oriented middleware that enables large scale choreog‐
raphies of adaptable and heterogeneous services in IoT. It aims to address scalability,
interoperability, and adaptability issues via static service interfaces. The SenseWrap
service-oriented middleware combines Zeroconf protocols with hardware abstraction
using virtual sensors [23]. A virtual sensor provides transparent discovery of resources,
through the use of Zeroconf protocols, which applications can use to discover sensor-
hosted services. SenseWrap also provides a standardized communication interface to
hide the sensor-specific details from the applications.

3 The Adaptive Runtime Middleware (ARM)

3.1 Our Contribution

This paper builds on our research work on middleware systems and in research projects
such as MUSIC, AsTeRICS and Prosperity4All, so as to design and develop an adaptive
middleware system for the IoT. Such a system will have the ability when a smart module
(e.g., sensor, actuator) is installed, to discover it, detect its capabilities, regenerate and
re-configure the middleware. The middleware supports annotation-driven runtime code
generation of device capabilities in the form of dynamic services. The key aspect is
simplicity for the developer, without introducing additional technologies, IDEs and
platforms. The developer can use the generated service interfaces to manage devices,
and thus create cross-platform distributed applications (e.g. Android, iOS, HTML5).

3.2 ARM Architecture

The proposed middleware takes advantage of the principles of RESTful architectural
pattern and exposes devices as services. The functionalities of each device (e.g., Smart
Light – turn light on, dim light) are implemented as annotated Java functions available
within each device-specific OSGi component. The key idea is that OSGi components
correspond to IoT devices, which can be accessed and managed using RESTful inter‐
faces. In addition, there are two main services implemented as OSGi components, which
refer to the middleware core functionality and the REST server that hosts the device
resources. The middleware core functionality detects the device capabilities via the
annotations in the OSGi component that is installed and allows generating the service
interfaces that the REST server component exposes, which correspond to the function‐
alities of the installed device.

The smallest components in the architecture are the individual OSGi bundles. Each
one of these bundles implements the device capabilities, which could be as simple as
turning a light on/off, or could be as complex as the interactions between multiple
actuators and sensors. The middleware core functionality detects the capabilities of
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newly installed bundles, thus generating the RESTful interfaces that expose and enable
access to these capabilities.

The communication between the components of the proposed adaptive runtime
middleware system is illustrated in Fig. 1, where the architecture of the middleware
system. The middleware bundle contains the application server that enables communi‐
cation with the installed bundles via the generated service interfaces. Furthermore, the
REST-based architecture enables to access devices over the network in distributed end-
user locations (e.g., home, office). The developer is able to develop client applications
that make use and even allow interaction between devices in distributed locations, since
the service interfaces can be accessed seamlessly via the middleware system available
in these locations.

Fig. 1. ARM middleware architecture.

3.3 ARM Implementation

The dynamic middleware is realized as an OSGi bundle, which utilizes the benefits of
the OSGi specification for enabling the modularity and scalability of the system. The
implemented middleware is built on top of the OSGi Equinox framework, used also in
the Eclipse IDE, which is actually an implementation of the OSGi specification. In
addition, the REST architecture satisfies and offers solutions in terms of the flexibility
needed in an IoT environment. For the implementation of the REST OSGi bundle, the
Java API for RESTful Web Services (JAX-RS) specification and its analogous Jersey
implementation were used. The OSGi-JAX-RS Connector (i.e., Staudacher) was used,
since it packages the Jersey implementation in the form of a bundle and thus integrating
consistently the Jersey and OSGi frameworks.

Apart from the core bundles, the middleware and REST server, each device or soft‐
ware service can be defined in a separate OSGi bundle. For instance, a WiFi smart socket
can be implemented as an OSGi bundle. This approach offers many advantages since it
enables above all flexibility, heterogeneity and scalability as new devices and software
services can be supported. The requirement is that developers create a new bundle that
enables communication to the device or software service.
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Java annotations are syntactic metadata that can be added in the code. Hence, when
a new bundle is installed, the middleware detects and starts the component, parses the
annotations of public methods and generates the service interfaces that enable direct
access to the new resource. The middleware will also generate the documentation for
the service, based on the annotations of each public method defined in the bundle. These
annotations define the functionality of the bundle, the signature of public methods
including the input and output parameters of the method. This mechanism is exploited
to enable runtime code generation of the service interfaces.

Descriptor and Annotations
The developer of each IoT device bundle needs to follow a set of guidelines, in
order to utilize the adaptive runtime functionality of the middleware. Each bundle
can be implemented and exported as a JAR file, which contains a descriptor (i.e.
XML file) and the implementation classes. The descriptor defines only the full name
of the implementation class for the bundle. This refers to the package followed by
the symbolic name for the bundle as defined in the component manifest, in the form
of: “<Exported-Package>.<Bundle-Symbolic-Name>”. For instance, if
the package is phillipshue and the symbolic name is SmartLight, then the
full name will be phillipshue.SmartLight. The developer should use Java
annotations on top of the public methods for documenting the functionalities
provided by, e.g. the SmartLight, which are used to generate the service interfaces
as defined next.

Service Interfaces
The generated service interfaces need to be consistent and adhere to a simple resource
path definition logic, which enables developers of client applications to easily access,
and learn how to invoke and thus make use of device functionalities. Table 1 presents
the generic definitions for the service interfaces that provide access to device or software
services. These refer to the resource paths automatically generated by the middleware.

Table 1. Middleware path hierarchy for generated service interfaces.

Path Description
<baseURL> Lists information on the available bundles, including

description and interface definition. The baseURL repre‐
sents the service interface of the middleware

<baseURL >/<BundleName> Provides information on a specific bundle. BundleName is
the middleware name for the bundle. The BundleName can
be retrieved by invoking the baseURL

<baseURL >/<BundleName >/
<MethodName>

Invokes functionality by the MethodName, which is
appended after the BundleName (no parameters)

<baseURL >/<BundleName >/
<MethodName >/<Parameter-
Data>

Invokes functionality by the MethodName, which is
appended after the BundleName (accepts parameters)

<baseURL >/<BundleName >/
<MethodName >/def

Presents information related to the functionality offered by
this method of the specified bundle
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4 Smart Light Use Case Demonstrator

The use case demonstrator introduced in this section presents the installation of the
bundle, as well as accessing, communicating and controlling the Philips Hue smart light.
In this use case scenario, an HTML5 client is implemented and used for demonstrating
the middleware capabilities. The bundle implementation offers access to four device
capabilities: (1) turn light on, (2) turn light off, (3) dim light and (4) set light level. First
the bundle descriptor needs to be defined by the bundle developer as follows:

Figure 2, presents a fraction of the code that showcases how annotations are defined
for the “turn light on” method implementation of the Phillips Hue. The next step involves
exporting the bundle. The middleware will then parse the descriptor containing the
bundle’s full name. If the bundle is not already installed, the middleware will automat‐
ically install and start it. Using reflection, the middleware detects all device capabilities,
re-configures the middleware via runtime code generation and injects/publishes the
discovered functionalities as RESTful service interfaces.

Fig. 2. Code snippet of the Phillips Hue implementation class.

Figure 3 showcases the resource paths for invoking the device capabilities. The
developer of the client application is now able to invoke the base URL, which will return
the description of the bundles currently installed and the paths for retrieving details on
how to invoke each device capabilities. Figure 4 presents the currently installed Phillips
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Hue bundle and exposes the description and paths for invoking the implemented func‐
tionalities of the device. An HTML5 client has been implemented, which allows show‐
casing the use of the dynamically generated service interfaces that enable accessing and
controlling the Phillips Hue Smart Light device (demo video1).

Fig. 3. Generated RESTful service interfaces for the Phillips Hue Smart Light.

Fig. 4. Generated RESTful service interfaces for the Phillips Hue Smart Light.

5 Conclusions and Future Work

The research work presented in this paper aims to provide an Adaptive Runtime
Middleware (ARM). The proposed middleware allows utilizing the benefits of the
OSGi framework, the Java reflection mechanism and the RESTful architectural
pattern in order to provide solutions to the IoT challenges of scalability, heteroge‐
neity and flexibility. The presented use case scenario demonstrates the adaptive
capabilities of the proposed ARM. The architecture of ARM enables to address the
aforesaid IoT issues, since for each IoT device or Cloud service a corresponding
bundle can be developed following the guidelines presented in this work. The bundle
can be then exported and the ARM - can install, start and parse the bundle so as to
generate at runtime the required service interfaces. Future research work aims to
extend the middleware capabilities so as enable dynamic generation of Server-Sent
Events (SSE) for handling sensor devices data as soon as they become available.

1 Available at: https://www.youtube.com/watch?v=NQ0tzv5Ob48&sns=em.
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Finally, a rules engine will be implemented for defining dependencies between
device and/or software services, for example motion detected → turn on camera.
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